
An Approach to Measuring A System’s Attack
Surface

Pratyusa K. Manadhata Kymie M. C. Tan
Roy A. Maxion Jeannette M. Wing

August 2007
CMU-CS-07-146

School of Computer Science
Carnegie Mellon University

Pittsburgh, PA 15213

This TR supersedes CMU-CS-05-155, “An Attack Surface Metric”.

This research was sponsored by the US Army Research Office (ARO) under contract no. DAAD190210389, SAP
Labs, LLC under award no. 1010751, and the Software Engineering Institute. The views and conclusions contained
in this document are those of the author and should not be interpreted as representing the official policies, either
expressed or implied, of any sponsoring institution, the U.S. government or any other entity.

Report Documentation Page Form Approved
OMB No. 0704-0188

Public reporting burden for the collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and
maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information,
including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington
VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to a penalty for failing to comply with a collection of information if it
does not display a currently valid OMB control number.

1. REPORT DATE
AUG 2007 2. REPORT TYPE

3. DATES COVERED
 00-00-2007 to 00-00-2007

4. TITLE AND SUBTITLE
An Approach to Measuring A System’s Attack Surface

5a. CONTRACT NUMBER

5b. GRANT NUMBER

5c. PROGRAM ELEMENT NUMBER

6. AUTHOR(S) 5d. PROJECT NUMBER

5e. TASK NUMBER

5f. WORK UNIT NUMBER

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Carnegie Mellon University,School of Computer
Science,Pittsburgh,PA,15213

8. PERFORMING ORGANIZATION
REPORT NUMBER

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSOR/MONITOR’S ACRONYM(S)

11. SPONSOR/MONITOR’S REPORT
NUMBER(S)

12. DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public release; distribution unlimited

13. SUPPLEMENTARY NOTES

14. ABSTRACT
Practical software security measurements and metrics are critical to the improvement of software security.
We propose a metric to determine whether one software system is more secure than another similar system
with respect to their attack surface. We use a system’s attack surface measurement as an indicator of the
system’s security; the larger the attack surface, the more insecure the system. We measure a system’s
attack surface in terms of three kinds of resources used in attacks on the system: methods, channels, and
data. We demonstrate the use of our attack surface metric by measuring the attack surfaces of two open
source IMAP servers and two FTP daemons. We validated the attack surface metric by conducting an
expert user survey and by performing statistical analysis of Microsoft Security Bulletins. Our metric can
be used as a tool by software developers in the software development process and by software consumers in
their decision making process.

15. SUBJECT TERMS

16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF
ABSTRACT
Same as

Report (SAR)

18. NUMBER
OF PAGES

29

19a. NAME OF
RESPONSIBLE PERSON

a. REPORT
unclassified

b. ABSTRACT
unclassified

c. THIS PAGE
unclassified

Standard Form 298 (Rev. 8-98)
Prescribed by ANSI Std Z39-18

Keywords: Attack Surface, Attack Surface Metric, Parameter Sensitivity Analysis, User Sur-
vey, Security Bulletins

Abstract

Practical software security measurements and metrics are critical to the improvement of software
security. We propose a metric to determine whether one software system is more secure than
another similar system with respect to their attack surface. We use a system’s attack surface
measurement as an indicator of the system’s security; the larger the attack surface, the more
insecure the system. We measure a system’s attack surface in terms of three kinds of resources
used in attacks on the system: methods, channels, and data. We demonstrate the use of our attack
surface metric by measuring the attack surfaces of two open source IMAP servers and two FTP
daemons. We validated the attack surface metric by conducting an expert user survey and by
performing statistical analysis of Microsoft Security Bulletins. Our metric can be used as a tool
by software developers in the software development process and by software consumers in their
decision making process.

1 Introduction

Measurement of security, both qualitatively and quantitatively, has been a long standing challenge
to the research community and is of practical import to software industry today [6, 23, 34]. Software
industry has responded to demands for improvement in software security by increasing effort for
creating “more secure” products and services. How can industry determine whether this effort is
paying off and how can consumers determine whether industry’s effort has made a difference? Our
work looks at an important question faced by both industry and consumers today: How can we
quantify a software system’s security?

In this paper, we propose to use the measure of a software system’s attack surface as an indicator
of the system’s security. Intuitively, a system’s attack surface is the set of ways in which an adversary
can enter the system and potentially cause damage. Hence the larger the attack surface, the more
insecure the system. We intend our attack surface metric to be used in a relative manner to compare
the security of similar systems, i.e., different versions of the same system or different systems with
similar functionality (e.g., different IMAP servers).

1.1 Background And Motivation

Our work on attack surface measurement is inspired by Michael Howard’s Relative Attack Sur-
face Quotient (RASQ) measurements [13]. Michael Howard informally introduced the notion of
attack surface for the Windows operating system and Howard, Pincus, and Wing measured the
attack surfaces of seven versions of Windows [16]. We later measured the attack surfaces of four
different versions of Linux [20]. The results of both the Linux and Windows measurements confirm
perceived beliefs about the relative security of the different versions. While it is very difficult to
devise security metrics that definitively measure the security of software [2, 24], the Windows and
Linux measurement results show that the attack surface measurement method holds promise. The
Windows and Linux measurement methods, however, were ad-hoc in nature. In this paper, we
formalize the notion of a system’s attack surface and propose a method to measure a system’s
attack surface systematically .

We envision our attack surface metric to be useful to both industry and consumers. Software
designers and developers can use our attack surface metric as a tool in the software development
process; they can measure their system’s attack surface periodically during the software devel-
opment phase, and compare the results with previous measurements. They should strive toward
reducing their system’s attack surface from one version to another to mitigate the security risk
of their system. Software consumers can also use our metric in their decision making process to
compare and differentiate between alternative and competing software systems. For example, sys-
tem administrators often make a choice between different available web servers, IMAP servers, or
FTP servers for their organization. Though several factors such as ease of installation and use are
relevant to the selection, security is a quality that is of heightened interest to system administrators
today. Hence they can compare the attack surface measurements of alternative software in choosing
one for their organization.

1.2 Attack Surface Metric

We know from the past that many attacks, e.g., exploiting a buffer overflow, on a system take
place by sending data from the system’s operating environment into the system. Similarly, many

1

other attacks, e.g., symlink attacks, on a system take place because the system sends data into its
environment. In both these types of attacks, an attacker connects to a system using the system’s
channels (e.g., sockets), invokes the system’s methods (e.g., API), and sends data items (e.g., input
strings) into the system or receives data items from the system. An attacker can also send data
indirectly into a system by using data items that are persistent (e.g., files). An attacker can send
data into a system by writing to a file that the system later reads. Similarly, an attacker can
receive data indirectly from the system by using shared persistent data items. Hence an attacker
uses a system’s methods, channels, and data items present in the system’s environment to attack
the system. We collectively refer to a system’s methods, channels, and data items as the system’s
resources and thus define a system’s attack surface in terms of the system’s resources.

Not all resources, however, are part of the attack surface. A system’s attack surface is the
subset of the system’s resources that an attacker can use to cause damage to the system. We
introduce an entry point and exit point framework to identify these relevant resources. Moreover,
not all resources contribute equally to the measure of a system’s attack surface. A resource’s
contribution to the attack surface reflects the likelihood of the resource being used in attacks. For
example, a method running with root privilege is more likely to be used in attacks than a method
running with non-root privilege. We introduce the notion of a damage potential-effort ratio to
estimate a resource’s contribution to the attack surface. A system’s attack surface measurement
is the total contribution of the resources along the methods, channels, and data dimensions; the
measurement indicates the level of damage an attacker can potentially cause to the system and the
effort required for the attacker to cause such damage. Given two systems, we compare their attack
surface measurements to indicate, along each of the three dimensions, whether one is more secure
than the other.

A system’s attack surface measurement does not represent code quality; hence a large attack
surface measurement does not imply that a system has many vulnerabilities and few vulnerabilities
in a system does not imply a small measurement. Instead, a larger attack surface measurement
indicates that an attacker is likely to exploit the vulnerabilities present in the system with less effort
and cause more damage to the system. Since a system’s code is likely to contain vulnerabilities,
it is prudent to choose a system with a smaller attack surface measurement in order to mitigate
security risk. Also notice that our measurements are with respect to only attacks that require
the attacker to either send (receive) data into (from) the system. For example, our attack surface
metric does not cover side channel attacks. The 2001 Workshop on Information-Security-System
Rating and Ranking observed that there will be no successful single security metric that can be
used to quantify the security of a system and multiple metrics will most certainly be used [34]. The
attack surface metric can be used as one of such multiple metrics.

1.3 Contribution and Roadmap

We make the following key contributions in this paper.

1. We outline a method to measure a system’s attack surface systematically and demonstrate
the use of our method by measuring the attack surfaces of two popular IMAP servers and
two FTP daemons.

2. We perform a careful study of the impact of the parameter values on our method and provide
guidelines to the users for choosing appropriate parameter values.

2

3. We validate the steps in our method by conducting a survey of twenty expert system admin-
istrators and by performing statistical analysis of Microsoft Security Bulletins published over
a period of two years.

The rest of the paper is organized as follows. We present the definition of a system’s attack
surface in Section 2 and present our measurement method in Section 3. We apply our method to
two IMAP servers and two FTP daemons in Section 4. We perform parameter sensitivity analysis
of our method in Section 5 and discuss our validation approach in Section 6. We compare our
work with previous and related work in Section 7. We conclude with a discussion of future work in
Section 8.

2 Attack Surface Definition

We use the entry point and exit point framework to identify the resources that are part of a system’s
attack surface. Informally, entry points of a system are the ways through which data “enters” into
the system from its environment, and exit points are the ways through which data “exits” from the
system to its environment. The entry points and exit points of a system act as the basis for attacks
on the system. Our technical report contains a formal description of the entry point and exit point
framework [21].

Consider a set, S, of systems, a user, U , and a data store, D. For a given system, s ∈ S, we
define its environment, Es = 〈U, D, T 〉, to be a three-tuple where U is the user, D is the data
store, and T = S \ {s}, is the set of systems excluding s. Every system in S has a set of methods.
A method of a system receives arguments as input and returns results as output. Examples of
methods are the API of a system. Every system also has a set of communication channels. The
channels of a system s are the means by which the user U or any other system in the environment
communicates with s. Examples of channels are TCP/UDP sockets, RPC end points, and named
pipes. The user U and the data store D are global with respect to the systems in S. The data
store is a collection of data items. Examples of data items are strings, URLs, files, and cookies.
We model the data store D as a separate entity to allow sharing of data among all the systems
in S. For simplicity, we assume only one user U is present in the environment. U represents the
adversary who attacks the systems in S.

2.1 Entry Points

The methods of a system that receive data items from the system’s environment are the system’s
entry points. A method of a system can receive data directly or indirectly from the environment.
A method, m, of a system, s, receives a data items directly if either (a) the user U or a system,
s1, in the environment invoke m and passes data items as input to m, or (b) m reads data items
from the data store, or (c) m invokes the API of a system s1 in the environment and receives data
items as results returned. A method is a direct entry point if it receives data items directly from
the environment. Few examples of the direct entry points of a web server are the methods in the
API of the web server, the methods of the web server that read configuration files from the file
system, and the methods of the web server that invoke the API of an application server.

A method, m, of s receives data items indirectly if either (a) a method, m1, of s receives a data
item, d, directly, and either m1 passes d as input to m or m receives d as result returned from
m1, or (b) a method, m2, of s receives a data item, d, indirectly, and either m2 passes d as input

3

to m or m receives d as result returned from m2. A method is a indirect entry point if it receives
data items indirectly from the environment. For example, a method in the API of the web server
that receives login information from a user might pass the information to another method in the
authentication module; the method in the authentication module is an indirect entry point. The
set of entry points of a system is the union of the set of direct entry points and the set of indirect
entry points.

2.2 Exit Points

The methods of a system that send data items to the system’s environment are the system’s exit
points. For example, a method that writes into a log file is an exit point. A method of a system can
send data directly or indirectly into the environment. A method, m, of a system, s, sends a data
items directly if either (a) the user U or a system, s1, in the environment invoke m and receive data
items as results returned from m, or (b) m writes data items to the data store, or (c) m invokes
the API of a system s1 in the environment and passes data items as input to s1’s API. A method
m of s is a direct exit point if m sends data items directly to the environment. A method, m, of s
sends data items indirectly if either (a) m passes a data item, d, as input to a method, m1, of s or
m1 receives d as result returned from m , and m1 passes d directly to s’s environment, or (b) m
passes a data item, d, as input to a method, m2, of s or m2 receives d as result returned from m,
and m2 passes d indirectly to s’s environment. A method m of s is a indirect exit point if m sends
data items indirectly to the environment. The set of exit points of a system is the union of the set
of direct exit points and the set of indirect exit points.

2.3 Channels

An attacker uses a system’s channels to connect to the system and attack the system. Hence a
system’s channels act as another basis for attacks. An example of a channel of an IMAP server is
the TCP socket opened by the IMAP server.

2.4 Untrusted Data Items

The data store D is a collection of persistent and transient data items. The data items that are
visible to both a system s and the user U across different executions of s are the persistent data
items. Specific examples of persistent data items are files, cookies, database records, and registry
entries. The persistent data items are shared between s and U , hence U can use the persistent
data items to send (receive) data indirectly into (from) s. Hence the persistent data items act as
another basis for attacks on s. An untrusted data item of a system s is a persistent data item d
such that a direct entry point of s reads d from the data store or a direct exit point of s writes d
to the data store. The configuration files of an IMAP server are examples of the IMAP server’s
untrusted data items.

Notice that the attacker sends (receives) the transient data items directly into (from) s by
invoking s’s direct entry points (direct exit points). Since the direct entry points (direct exit
points) of s act as a basis for attacks on s, we do not consider the transient data items as a basis
for attacks on s.

4

2.5 Attack Surface

The set of entry points and exit points, the set of channels, and the set of untrusted data items are
the resources that the attacker can use to either send data into the system or receive data from the
system and hence attack the system. Hence given a system, s, and its environment, Es, s’s attack
surface is the triple, 〈M,C, I〉, where M is the set of entry points and exit points, C is the set of
channels, and I is the set of untrusted data items of s.

3 Attack Surface Measurement

A naive way of measuring a system’s attack surface is to count the number of resources that
contribute to the attack surface. This naive method is misleading as it assumes that all resources
contribute equally to the attack surface. In real systems, not all resources contribute equally to the
attack surface. For example, a method, m1, running as root is more likely to be used in an attack
than a method, m2, running as non-root; hence m1 contributes higher to the attack surface than
m2.

We estimate a resource’s contribution to a system’s attack surface as a damage potential-effort
ratio where damage potential is the level of harm the attacker can cause to the system in using the
resource in an attack and effort is the amount of work done by the attacker to acquire the necessary
access rights in order to be able to use the resource in an attack. The higher the damage potential,
the higher the contribution; the higher the effort, the lower the contribution.

3.1 Damage Potential-Effort Ratio

In this section, we describe a method of estimating a resource’s damage potential and effort in terms
of the attributes of the resource. Our estimation method is a specific instantiation of our general
measurement framework. Our estimation of damage potential includes only technical impact (e.g.,
privilege elevation) and not business impact (e.g., monetary loss) though our framework does not
preclude this generality. We do not make any assumptions about the attacker’s capabilities or
resources in estimating damage potential or effort.

Our estimates of damage potential and effort depend on the kind of the resource, i.e., method,
channel, or data item. We estimate a method’s damage potential in terms of the method’s privilege.
An attacker gains the same privilege as a method by using a method in an attack. For example,
the attacker gains root privilege by exploiting a buffer overflow in a method running as root.
The attacker can cause damage to the system after gaining root privilege. The attacker uses a
system’s channels to connect to a system, and send (receive) data to (from) a system. A channel’s
protocol imposes restrictions on the data exchange allowed using the channel, e.g., a TCP socket
allows raw bytes to be exchanged whereas a RPC endpoint does not. Hence we estimate a channel’s
damage potential in terms of the channel’s protocol. The attacker uses persistent data items to send
(receive) data indirectly into (from) a system. A persistent data item’s type imposes restrictions
on the data exchange, e.g., a file can contain executable code whereas a registry entry can
not. The attacker can send executable code into the system by using a file in an attack, but the
attacker can not do the same using a registry entry. Hence we estimate a data item’s damage
potential in terms of the data item’s type.

The attacker can use a resource in an attack if the attacker has the required access rights. The
attacker spends effort to acquire these access rights. Hence for the three kinds of resources, i.e.,

5

Source
Code

Call graph Generator
and Analyzer

Compilation and
Execution

Run time
Monitoring

Attack Surface
Computation

Numeric Values

Annotated
Source Code

Running
Process

Entry Points and
Exit Points

Attack Surface
Measurements

Channels

Untrusted
Data Items

Input and Output Methods

Annotation

Figure 1: Attack surface measurement steps.

methods, channels, and data, we estimate the effort the attacker needs to spend to use a resource
in an attack in terms of the resource’s access rights.

We assign numbers to the values of the attributes to compute a numeric damage potential-effort
ratio. We describe a specific method of assigning numbers in Section 4.2.

3.2 Attack Surface Measurement Method

Our attack surface measurement method consists of the following three steps.

1. Given a system, s, and its environment, Es, we identify a set, M , of entry points and exit
points, a set, C, of channels, and a set, I, of untrusted data items of s.

2. We estimate the damage potential-effort ratio, derm(m), of each method m ∈ M , the damage
potential-effort ratio, derc(c), of each channel c ∈ C, and the damage potential-effort ratio,
derd(d), of each data item d ∈ I.

3. The measure of s’s attack surface is the triple 〈
∑

m∈M

derm(m),
∑

c∈C

derc(c),
∑

d∈ I

derd(d)〉.

4 Case Studies

In this section, we describe the process of measuring the attack surfaces of two Internet Message
Access Protocol (IMAP) servers and two File Transfer Protocol (FTP) daemons. Figure 1 shows the
steps followed in our attack surface measurement method. The dotted boxes show the steps done
manually and the solid boxes show the steps done programmatically. The dotted lines represent
manual inputs required for measuring the attack surface.

Two keys steps in our attack surface measurement method are the identification of relevant
resources that are part of the attack surface and the estimation of the damage potential-effort ratio
of each such resource. We describe the steps in Section 4.1 and Section 4.2 respectively. We report
the IMAP measurement results in Section 4.3 and the FTP measurement results in Section 4.4.

4.1 Identification of Relevant Resources

In Step 1 of the attack surface measurement method, we identified the set of entry points and
exit points, the set of channels, and the set of untrusted data items for both code bases. We also
determined the privilege levels of the set of entry points and exit points, the protocols of the set

6

of channels, the types of the set of untrusted data items, and the access rights levels of all the
resources.

4.1.1 Entry Points and Exit Points

As proposed by DaCosta et al. [9], we assume that a method of a system can receive data items
from the system’s environment by invoking specific C library methods. Hence a method is a direct
entry point if the method contains a call to one of the specific C library methods. For example, a
method is a direct entry point if it contains a call to the read method defined in unistd.h. We
identified a set, Input, of C library methods that a method must invoke to receive data items from
the environment. We identified the methods of a system that contained a call to a method in Input
as the direct entry points of the system.

We also assume that a method can send data items to the system’s environment by invoking
specific C library methods. We identified a set, Output, of C library methods that a method must
invoke to send data items to the environment. We identified the methods of a system that contained
a call to a method in Output as the direct exit points. Please see Appendix A for the Input and
Output sets of methods.

We could not find a source code analysis tool that enables us to determine whether a direct
entry point m1 receives a data item d from the environment and a method m receives the data
item d from m1, or whether a method m passes a data item d to a direct exit point m2 and m2

sends the data item d to the environment; hence we could not identify the indirect entry points
or the indirect exit points in an automated manner. We only identified the indirect entry points
reachable from the main method in both IMAP codebases; we did not identify any indirect entry
points of the FTP daemons. Our measurements are under-approximations of the measure of the
attack surfaces.

We also identified the privilege level and access rights level of the entry points and the exit
points. On a UNIX system, a process changes its privilege through a set of uid-setting system calls
such as setuid. If a process changes its privilege level from p1 to p2 by invoking a uid-setting
system call, then we assume that all methods invoked before the uid-setting call run with privilege
p1 and all methods invoked after the uid-setting system call run with privilege p2. For example, if a
process starts with root privilege, and then drops privilege by calling setuid, then all methods that
are invoked before setuid have root privilege, and all methods that are invoked after setuid have
non-root privilege. In order to determine the access rights levels, we identified the code locations
where authentication is performed in both codebases. We assumed that any method that is invoked
before user authentication takes place has unauthenticated access rights, and any method that is
invoked after successful authentication has authenticated access rights.

We annotated each codebase to indicate the code location where privilege levels and access
rights levels change. We generated the call graph of the annotated code using cflow [27]. From the
call graph, we identified the methods that contained a call to a method in Input or a method in
Output, and the privilege and access rights of each such method. These identified methods are the
direct entry points and direct exit points respectively. Notice that a method may run with different
privilege levels during different executions of the method. Similarly, a method may be accessible
with multiple access rights levels. We identified such a method as a direct entry point (direct exit
point) multiple times, once per each pair of privilege level and access rights level.

7

4.1.2 Channels and Untrusted Data Items

It is difficult to statically determine the channels opened by a system and the data items accessed
by the system. Hence we monitored the run time behavior of the default installations of the FTP
daemons and the IMAP servers to identify the channels opened by the systems and to determine
the protocol and access rights level of each such channel. We similarly used run time monitoring to
identify the untrusted data items and to determine the type and access rights level of each untrusted
data item. Run time monitoring, however, does not guarantee completeness; we may not be able
to identify all possible open channels and untrusted data items. Our approach may produce an
under-approximation of a system’s attack surface measurement. In case of the IMAP servers and
the FTP daemons, the systems opened all their channels as soon as they started running; hence we
could identify all open channels. This, however, may not be true for complex software systems.

4.2 Estimation of a Resource’s Damage Potential-Effort Ratio

In Step 2 of the attack surface measurement method, we quantified the damage potential-effort
ratios of the resources. In order to quantify a resource’s damage potential-effort ratio, we assigned
numeric values to the resource’s attributes. We imposed a total ordering among the values of
an attribute and assigned numeric values in accordance to the total ordering. For example, we
imposed a total ordering among the privilege levels such that a method running with a higher
privilege level in the total ordering has a higher damage potential. If a privilege level, p1, is greater
than a privilege level, p2, in the total ordering, then we assign a higher number to p1 compared
to p2. The numeric values also reflect the relative damage an attacker can cause to a system with
different privilege levels. For example, given a system and its environment, if we believe that an
attacker can cause thrice as much damage in privilege level p1 compared to p2, then the numeric
value assigned to p1 is thrice the numeric value assigned to p2.

The exact choice of the numeric values is subjective and depends on a system and its environ-
ment. We assigned the numeric values based on our knowledge of the FTP daemons, the IMAP
servers, and UNIX security. We, however, performed a sensitivity analysis of the effects of the
range of the values on our method; we describe the analysis in details in Section 5. We estimated a
resource’s damage potential-effort ratio from the numeric values assigned to the resource’s damage
potential and effort. For example, we estimated the damage potential-effort ratio of a method from
the numeric values assigned to the method’s privilege and access rights level.

4.3 IMAP Measurement Results

We measured the attack surfaces of two open source IMAP servers: Courier-IMAP 4.0.1 and Cyrus
2.2.10. Our choice of the IMAP servers was guided by two factors: popularity and the availability
of source code. Courier-IMAP server is the IMAP server included in the Courier mail server [17].
The Cyrus IMAP server was implemented and is maintained by Project Cyrus [7]. We considered
only the code specific to the IMAP daemon in our attack surface measurements. The Courier code
base contains nearly 33K lines of C code specific to the IMAP daemon, and the Cyrus code base
contains nearly 34K lines of C code specific to the IMAP daemon.

8

Courier

Privilege Access Rights DEP DExP IEP

root unauthenticated 28 17 11
root authenticated 21 10 0
auth authenticated 113 28 1

Cyrus

Privilege Access Rights DEP DExP IEP

cyrus unauthenticated 16 17 7
cyrus authenticated 12 21 2
cyrus admin 13 22 2
cyrus anonymous 12 21 2

Table 1: The number of entry points and exit
points of the IMAP servers.

Courier

Type Access Rights Count

TCP remote unauth 1
SSL remote unauth 1
UNIX socket local auth 1

Cyrus

Type Access Rights Count

TCP remote unauth 2
SSL remote unauth 1
UNIX socket local auth 1

Table 2: The number of channels opened by
the IMAP servers.

4.3.1 Entry Points and Exit Points

All the methods in the Cyrus codebase run with a special UNIX user, cyrus, privilege. The methods
are accessible with admin, authenticated user, unauthenticated user, and anonymous user access
rights. The methods in the Courier codebase run with root and authenticated user privileges.
The methods are accessible with authenticated user and unauthenticated user access rights.
The Courier codebase does not support admin user and anonymous user. We show the number
of direct entry points (DEP), direct exit points (DExP), and indirect entry points (IEP) for each
privilege level and access rights pair in Table 1.

4.3.2 Channels

Both IMAP daemons open a TCP channel on port 143 and a SSL channel on port 993 to listen
to user requests. In addition, the Cyrus daemon opens a TCP channel on port 2000 for users
to edit their sieve filters. These channels are accessible with remote unauthenticated user
access rights. The Courier IMAP daemon opens a local UNIX socket channel to communicate
with the authentication daemon. The Cyrus IMAP daemon opens a local UNIX socket channel to
communicate with the Local Mail Transfer Protocol (LMTP) daemon. These channels are accessible
with local authenticated user access rights. We show the number of channels for each channel
type and access rights pair in Table 2.

4.3.3 Untrusted Data Items

Both IMAP daemons read or wrote persistent data items of file type; both daemons used con-
figuration files, authentication files, executable files, libraries, lock files, user mail files, and mail
metadata files. The files of the Courier IMAP daemon can be accessed with root, authenticated
user, and world access rights. The files of the Cyrus IMAP daemon can be accessed with root,
cyrus, and world access rights. Recall that an attacker can use an untrusted data item in an attack
by reading or writing the data item. Hence we identified the read and the write access rights levels
of a file separately; we counted each file twice, once for the read access rights level and once for
the write access rights level. We show the number of untrusted data items for each data item type
and access rights pair in Table 3.

9

Courier

Type Access Rights Count

file root 74
file authenticated 13
file world 53

Cyrus

Type Access Rights Count

file root 50
file cyrus 26
file world 50

Table 3: The number of untrusted data
items accessed by the IMAP servers.

Method Privilege Value Access Rights Value

root 5 admin 4
cyrus 4 auth 3
authenticated 3 anonymous 1

unauthenticated 1

Channel Type Value Access Rights Value

TCP 1 local auth 4
SSL 1 remote unauth 1
UNIX socket 1

Data Item Type Value Access Rights Value

file 1 root 5
cyrus 4
authenticated 3
world 1

Table 4: Numeric values assigned to the values of the
attributes.

4.3.4 Estimation of the Damage Potential-Effort Ratio

We assigned the following total ordering among the set of privilege levels: root > cyrus >
authenticated. A method running with cyrus privilege in the Cyrus IMAP daemon has ac-
cess to every user’s email files, hence we assumed a method running as cyrus has higher damage
potential than a method running as authenticated user. We assigned the following total ordering
among the set of access rights levels of the methods: admin > authenticated > anonymous =
unauthenticated. admin users are special users in Cyrus, hence we assumed the attacker spends
higher effort to acquire admin access rights compared to authenticated access rights. We could
not assign a total ordering among the protocols of the channels, hence we assumed that each chan-
nel has the same damage potential. We assigned the following total ordering among the access
rights levels of the channels: local authenticated > remote unauthenticated. Both IMAP
daemons have untrusted data items of file type only, hence assigning a total ordering was trivial.
We assigned the following total ordering among the access rights levels of the data items: root >
cyrus > authenticated > world. The cyrus user is a special user, hence we assumed the attacker
spends more effort to acquire cyrus access rights compared to authenticated access rights. We
show the numeric values in Table 4.

4.3.5 Attack Surface Measurements

In Step 3 of the attack surface measurement method, we estimated the total contribution of the
methods, the total contribution of the channels, and the total contribution of the data items to the
attack surfaces of both IMAP daemons. From Table 1 and Table 4, the total contribution of the
methods of Courier is (56 × (5

1) + 31 × (5
3) + 142 × (3

3)) = 522.00. From Table 2 and Table 4,
the total contribution of the channels of Courier is (1 × (1

1) + 1 × (1
1) + 1 × (1

4)) = 2.25. From
Table 3 and Table 4, the total contribution of the data items of Courier is (74 × (1

5) + 13 × (1
3)

+ 53 × (1
1)) = 72.13. Hence the measure of the Courier IMAP daemon’s attack surface is the

triple 〈522.00, 2.25, 72.13〉. Similarly, the measure of the Cyrus IMAP daemon’s attack surface is
the triple 〈383.60, 3.25, 66.50〉. We show the measurement results in Figure 2.

The attack surface metric tells us that the Cyrus IMAP daemon is more secure along the
method and data dimension whereas the Courier IMAP daemon is more secure along the channel

10

Figure 2: Attack surface measurements of the IMAP servers.

dimension. In order to choose one IMAP daemon over another, we use our knowledge of the IMAP
daemons and the operating environment to decide which dimension of the attack surface presents
more risk and choose the IMAP daemon that is more secure along that dimension. For example,
if we are concerned about privilege elevation on the host running the IMAP daemon, then the
method dimension presents more risk, and the attack surface metric suggests that we choose the
Cyrus daemon over the Courier daemon. Similarly, if we are concerned about the number of open
channels on the host running the IMAP daemon, then the channel dimension presents more risk,
and we choose the Courier daemon. If we are concerned about the safety of email files, then the
data dimension presents more risk, and we choose the Cyrus daemon.

4.4 FTP Measurement Results

We also measured the attack surfaces of two open source FTP daemons: ProFTPD 1.2.10 and Wu-
FTPD 2.6.2 [22]. ProFTPD was implemented and is maintained by the ProFTPD project group
[28]. Wu-FTPD was implemented and is maintained at the University of Washington [12]. The
ProFTP codebase contains 28K lines of C code and the Wu-FTP codebase contains 26K lines of C
code; we only considered code specific to the FTP daemon. We briefly describe the measurement
results in the following paragraphs.

We show the number of direct entry points (DEP) and direct exit points (DExP) for each
privilege level and access rights level pair in Table 5. Notice that a subset of the methods in the
ProFTPD codebase run with a special UNIX user, proftpd, privilege.

Both FTP daemons open a TCP channel so that FTP clients can communicate with the daemons.
These channels are accessible with remote unauthenticated user access rights.

Both daemons read or wrote persistent data items of file type; both daemons used configu-
ration files, authentication files, executable files, libraries, and log files. We show the number of
untrusted data items for each data item type and access rights pair in Table 7.

We show the numeric values assigned to the attributes of the resources in Table 6. Notice that
a method running with proftpd privilege in ProFTPD has access to all the files on the FTP server,
hence we assumed a method running as proftpd user has higher damage potential than a method
running as authenticated user.

We estimated the total contribution of the methods, the total contribution of the channels, and
the total contribution of the data items to the attack surfaces of both FTP daemons. The measure
of ProFTPD’s attack surface is the triple 〈312.99, 1.00, 18.90〉 and the measure of Wu-FTPD’s

11

ProFTPD

Privilege Access Rights DEP DExP

root root 8 8
root authenticated 12 13
root unauthenticated 13 14
proftpd authenticated 6 4
proftpd unauthenticated 13 6
proftpd anonymous 6 4

Wu-FTPD

Privilege Access Rights DEP DExP

root authenticated 9 2
root unauthenticated 30 9
authenticated authenticated 11 3
authenticated anonymous 11 3
authenticated guest 27 14

Table 5: The number of entry points and exit
points of the FTP daemons.

Method

Privilege Access Rights

root = 5 root = 5
proftpd = 4 authenticated = 3
authenticated = 3 anonymous =1

unauthenticated = 1
guest = 1

Channel Protocol Access Rights

TCP = 1 remote unauth =1

Data

Type Access Rights

file = 1 root = 5
proftpd = 4
authenticated = 3
world = 1

Table 6: Numeric values assigned to the val-
ues of the attributes.

ProFTPD Wu-FTPD

Type Access Rights Count Type Access Rights Count

file root 12 file root 23
file proftpd 18 file auth 12
file world 12 file world 9

Table 7: The number of untrusted data items accessed by the FTP daemons.

attack surface is the triple 〈392.33, 1.00, 17.60〉. We show the measurement results in Figure 3.
The attack surface metric tells us that ProFTPD is more secure along the method dimension,
ProFTPD is as secure as Wu-FTPD along the channel dimension, and Wu-FTPD is more secure
along the data dimension. Similar to the IMAP daemons, in order to choose one FTP daemon over
another, we identify the dimension that presents more risk and choose the daemon that is more
secure along that dimension.

5 Parameter Sensitivity Analysis

In our attack surface measurement method, we rely on the domain knowledge of the users of our
metric to estimate a resource’s damage potential-effort ratio. For example, users of our metric use
this knowledge to impose a total ordering among the values of an attribute and then to assign
numeric values according to the total ordering. To provide guidelines to the users for choosing
appropriate numeric values, we perform parameter sensitivity analysis. In this analysis, we assume
that the users have already imposed total orderings among the values of the attributes.

5.1 Method

The attack surface measurement along the method dimension depends on the following three pa-
rameters: the number of entry points and exit points, the numeric values assigned to the privilege
levels, and the numeric values assigned to the access rights levels. Given two systems, either both
systems have comparable numbers of entry points and exit points (e.g., ProFTPD = 107 and Wu-
FTPD = 109) or the number of entry points and exit points of one system differs significantly from

12

Figure 3: Attack surface measurements
of the FTP daemons.

’ProFTPD’
’Wu-FTPD’

 0
 5

 10
 15

 20
Privilege Difference 0

 5

 10

 15

 20

Access
Rights

 Difference

 0

 500

 1000

 1500

 2000

 2500

Attack Surface
 Measurement

Figure 4: Attack surface measurements of the FTP dae-
mons along the method dimension.

the other system (e.g., Cyrus = 147 and Courier = 239). For both these cases, we analyze the
effects of the privilege numeric values and the access rights numeric values on the attack surface
measurement.

We study the effects on the measurement as we increase the difference in the numeric values
assigned to the attributes. To keep our analysis simple, we assume that the difference, diff, in the
numeric values assigned to successive privilege and access rights levels is uniform. For example,
the difference in the numeric values assigned to authenticated and proftpd is the same as the
difference in the numeric values assigned to proftpd and root. We assign a fixed numeric value,
3, to the lowest privilege level authenticated. We then assign the numeric value (3 + diff) to
proftpd and the numeric value (3 + 2 * diff) to root. We similarly assign a fixed numeric value,
1, to the lowest access rights level unauthenticated and then assign numeric values to the rest of
the access rights levels. We observe the effects of changing the value of diff from a low value of 1
to a high value of 20.

5.1.1 FTP Measurements Analysis

We show the effects of changing the value of diff on the attack surface measurements of the
FTP daemons in Figure 4. For example, when the privilege difference is 2 and the access rights
difference is 17, ProFTPD’s attack surface measurement is 349.7 and Wu-FTPD’s attack surface
measurement is 444.6. Hence Wu-FTPD has a larger attack surface measurement than ProFTPD.
Similarly, when the privilege difference is 17 and the access rights difference is 6, ProFTPD’s attack
surface measurement is 1785.3 and Wu-FTPD’s attack surface measurement is 1672.1. Hence Wu-
FTPD has a smaller attack surface measurement than ProFTPD.

We show the attack surface measurements as a projection into a two dimensional plane in Figure
5. In the projection, we only see the FTP daemon that has a larger attack surface measurement.
For example, when the privilege difference is 2 and the access rights difference is 17, Wu-FTPD has
a larger attack surface than ProFTPD and hence we see Wu-FTPD in the projection. Similarly,
when the privilege difference is 17 and the access rights difference is 6, we see ProFTPD in the
projection.

From Figure 5, when the privilege difference is low (1-2), Wu-FTPD has a larger attack surface
measurement for all possible values of the access rights difference. When the privilege difference

13

’ProFTPD’
’Wu-FTPD’

 0 5 10 15 20
Privilege Difference

 0

 5

 10

 15

 20

Access
Rights

 Difference

Figure 5: Projection of the measurements of the
FTP daemons.

’Cyrus’
’Courier’

 0 5 10 15 20
Privilege Difference

 0

 5

 10

 15

 20

Access
Rights

 Difference

Figure 6: Projection of the measurements of the
IMAP servers.

is low, the access rights values do not matter; the number of entry points and exit points is the
dominating parameter. Since Wu-FTPD has a larger number of entry points and exit points, it has
a larger attack surface measurement.

When the privilege difference is high (15-20), ProFTPD has a larger attack surface measurement
for all possible values of the access rights difference. The proftpd privilege level contributes more
in case of ProFTPD compared to the authenticated privilege level of Wu-FTPD. The access rights
values do not matter; the privilege values are the dominating parameter.

When the privilege difference is medium (3-14), the access rights values do matter. ProFTPD
has a larger number of methods accessible with authenticated access rights than the number
of methods accessible with unauthenticated access rights. Wu-FTPD has a smaller number of
methods accessible with authenticated access rights than the number of methods accessible with
unauthenticated access rights. Hence with increasing access rights difference, the methods of
ProFTPD make smaller contribution to the attack surface compared to the methods of Wu-FTPD.
Hence ProFTPD has a larger measurement for lower access rights difference and Wu-FTPD has a
larger measurement for higher access rights difference.

5.1.2 IMAP Measurements Analysis

We show the attack surface measurements of the IMAP servers as a projection into a two dimen-
sional plane in Figure 6. In the projection, we only see the IMAP server that has a higher attack
surface measurement. From Figure 6, Courier has a larger attack surface measurement for almost
all possible privilege difference and access rights difference. The privilege values and access rights
values do not matter; the number of entry points and exit points is the dominating parameter.
Courier has a significantly larger number of entry points and exit points than Cyrus; hence Courier
has a larger attack surface measurement.

5.1.3 Observations

Our choice of the numeric values should be such that both the privilege values and the access rights
values affect the outcome of the attack surface measurements comparison. The FTP measurements
analysis shows that if both systems have comparable numbers of entry points and exit points, then

14

the access rights values do not affect the measurements if the privilege difference is low or high.
Hence we should choose a medium difference for the privilege values. The IMAP measurement
analysis shows that if one system has a significantly larger number of entry points and exit points
than the other, then no choice of the privilege difference or the access rights difference affects
the measurement. Also, if we choose a medium or a high difference for the privilege values, then
we should not choose a low difference for the access rights values; otherwise the privilege values
will dominate the access rights values in the damage potential-effort ratio. Hence combining the
observations, we suggest that users of our metric choose a medium difference for the privilege values
and either a medium or a high difference for access rights values.

5.2 Channel

We performed a similar analysis for the measurements along the channel dimension by changing the
difference in the numeric values assigned to the protocols and the access rights levels. ProFTPD
and Wu-FTPD open the same set of channels; hence ProFTPD and Wu-FTPD have the same
measurements for all possible differences in the protocol values and the access rights values. The
set of channels opened by Courier is a subset of the channels opened by Cyrus; hence Cyrus has a
larger attack measurement than Courier for all possible differences in the protocol values and the
access rights values.

Both the FTP measurements and the IMAP measurements show that similar systems open
comparable sets of channels, i.e., either they open the same set of channels or the set of channels
opened by one system is a subset of the other. Then we do not need to impose a total ordering
and assign numeric values to the attributes; we can determine whether one system has a larger
attack surface along the method dimension from the number of channels opened by the systems.
If the channels opened by the system, however, are not comparable, then we should follow the
recommendations for the method dimension (discussed in Section 5.1.3) to assign numeric values
to the protocols and the access rights levels.

5.3 Data

We performed a similar analysis for the measurements along the data dimension by changing the
difference in the numeric values assigned to the data types and the access rights levels. ProFTPD
has a larger attack surface measurement than Wu-FTPD for all possible differences in the numeric
values assigned to the data types and the access rights levels. The number of files accessed by
ProFTPD (42) is comparable to the number of files accessed by Wu-FTPD (44). Wu-FTPD has a
smaller attack surface measurement because Wu-FTPD has a large number of files accessible with
the root access rights. These files make the least contribution to the attack surface measurement
as we assign the highest numeric value to the root access rights level.

Courier has a larger attack surface measurement than Cyrus for all possible differences in
the numeric values assigned to the data types and the access rights levels. Cyrus and Courier
access comparable numbers of files. The larger attack surface measurement of Courier is due to
a larger number of files accessible with the unauthenticated access rights. These files make the
greatest contribution to the attack surface measurement as we assign the lowest numeric value to
the unauthenticated access rights level.

Both the FTP and the IMAP measurements show that the systems access data items of only
file type. Hence assigning numeric values to the data types is trivial. If a system, however,

15

accesses data items of other type, then we should follow the recommendations for the method
dimension (discussed in Section 5.1.3) to assign numeric values to the data types. We should also
follow the same recommendations for assigning numeric values to the access rights levels.

5.4 Discussion

Recall that our analysis assumed the existence of user-imposed total orderings among the values
of the six attributes. Natural total orderings exist among the privilege levels of the methods, the
access rights levels of the methods, the access rights levels of the channels, and the access rights
levels of the data items. For example, root has a higher damage potential than authenticated
user in UNIX. No such natural orderings, however, exist among the protocols of the channels and
the types of the data items. Our analysis of Section 5.2 and 5.3 show that there might not be a
need for imposing total orderings among channel protocols and data item types in real systems.
We, however, plan to provide guidelines to users for imposing total orderings among the values of
these two attributes as part of future work.

6 Validation

A key challenge in security metric research is the validation of the metric. We follow two different
approaches to validate the assumptions made in our attack surface measurement method. There
are three key hypotheses in our attack surface measurement method.

1. Methods, channels, and data are the right dimensions of a system’s attack surface.
2. The damage potential-effort ratio is a good indicator of how likely a resource is going to be

used in attacks.
3. The six attributes (the privilege and the access rights of a method, the protocol and the

access rights of a channel, and the type and the access rights of a data item) of the resources
are good indicators of damage potential and effort.

We validate hypotheses 1, 2, and 3 using an expert user survey discussed in Section 6.1 and
hypotheses 1 and 3 using statistical analysis of data collected from the Microsoft Security Bulletins
discussed in Section 6.2.

6.1 Expert Survey

We conducted an email survey of experts to validate the steps in our attack surface measurement
method [11]. System administrators are potential users of our method; hence we chose experienced
Linux system administrators as the participants of our survey.

6.1.1 Subjects

We identified twenty system administrators as the subjects of our survey. We chose the subjects
from diverse backgrounds to avoid any bias: fifteen of them work in ten universities, four of them
work in four corporations, and one works in a government agency. Nineteen of the subjects are
geographically distributed over the US and one is based in Europe. We also chose experienced
system administrators who were knowledgeable about software security in order to obtain reliable
responses. Six of the subjects have 2-5 years of full time experience of managing Linux systems;

16

eleven, 5-10 years of experience, and the remaining three, more than 10 years of experience. The
subjects have installed and maintained software such as web servers, IMAP servers, and database
servers on Linux. The subjects either have implemented or posses the knowledge to implement
software attacks such as buffer overflow exploitation, format string exploitation, and cross-site
scripting attack.

6.1.2 Questionnaire

The survey questionnaire consists of six explanatory questions. The questions were designed to
measure the attitude of the subjects about the steps in our attack surface measurement method.
The questions asked the subjects to indicate their degree of agreement or disagreement with the
assumptions made in our measurement method on a five point Likert scale [18]. We also asked the
subjects to explain the reasons behind their choices and to suggest alternative ways to carry out
the steps in our measurement method.

We conducted six rounds of pretesting of the questionnaire to identify and remove leading
questions, ambiguous terms, and overall confusing questions from the questionnaire [33]. After each
round of pretesting, we interviewed the participant and refined our questions using the feedback
from the participant.

6.1.3 Results and Discussion

We analyzed the Likert scale responses using descriptive techniques [30]. We combined the strongly
agree and the agree responses and the strongly disagree and the disagree responses, and computed
the proportion of the subjects who agree (strongly or otherwise), disagree (strongly or otherwise),
and are neutral with the steps in our measurement method. We performed one sample t-tests to
determine the statistical significance of our findings. We chose a p-value of 0.05 as the threshold;
findings with p-values less than 0.05 are statistically significant. We below summarize the findings
of the survey.

1. Methods, channels, and data are the right dimensions of the attack surface (Table 8).
2. A resource’s damage potential-effort ratio is an indicator of the likelihood of the resource

being used in attacks (Table 9).
3. A method’s privilege is an indicator of damage potential (Table 10, row 1) and a method’s

access rights (Table 10, row 2), a channel’s access rights (Table 10, row 4) , and a data item’s
access rights (Table 10, row 6) are indicators of attacker effort.

4. The findings are not conclusive with respect to channel protocol (Table 10, row 3) and data
item type (Table 10, row 5).

Our first set of questions probed the subjects about their perception of our choice of methods,
channels, and data as the right dimensions of the attack surface. We show the percentage of the
subjects who agree, disagree, and neither agree or disagree with our choice in Table 8. The findings
show that a majority of the subjects agree with our choice of the dimensions; the p-values show
that the findings are statistically significant. We conclude that methods, channels, and data are
the right dimensions of the attack surface.

Our second set of questions asked subjects whether the damage potential-effort ratio of a re-
source is an indicator of the likelihood of the resource being used in attacks. We show the responses

17

Dimension A D N p-value

Methods 95% 0% 5% p < 0.0001
Channels 95% 0% 5% p < 0.0001
Data 85% 0% 15% p < 0.0001

Table 8: A majority of the subjects
agree with our choice of the dimensions.
(A = Agree, D = Disagree, N = Neu-
tral)

A D N p-value

der 70% 20% 10% p = 0.0141

Table 9: Perception of the subjects
about the damage potential-effort ratio
(der). (A = Agree, D = Disagree, N =
Neutral)

Attribute A D N p-value

Method Privilege 90% 0% 10% p < 0.0001
Access rights 70% 5% 25% p = 0.0001

Channel Protocol 45% 25% 30% p = 0.2967
Access Rights 75% 5% 20% p < 0.0001

Data Item Type 45% 5% 50% p = 0.8252
Access Rights 85% 10% 5% p < 0.0001

Table 10: Perception of the subjects about the choice
of our attributes. (A = Agree, D = Disagree, N =
Neutral)

in Table 9. A majority of the subjects agree with our choice of the damage potential-effort ratio
and the finding is statistically significant. We conclude that the damage potential-effort ratio of a
resource is an indicator of the likelihood of the resource being used in attacks.

Our third set of questions probed the subjects about their perception of our choice of the six
attributes of the resources as indicators of the resources’ damage potential and effort. We show the
percentage of the subjects who agree, disagree, and neither agree or disagree with our choice of the
attributes in Table 10. A majority of the subjects agree that a method’s privilege is an indicator of
the method’s damage potential and a method’s access rights, a channel’s access rights, and a data
item’s access rights are indicators of the attacker effort. The p-values show that the findings are
statistically significant. We conclude that these four attributes are indicators of damage potential
and effort.

Though a majority of the subjects agree that channel’s protocol is an indicator of the channel’s
damage potential, the p-value shows that the result is not statically significant. Similarly, though
a majority of the subjects disagree that a data item’s type is an indicator of damage potential, the
finding is not statically significant. Hence the findings of the survey are not conclusive with respect
to our choice of a channel’s protocol and a data item’s type as indicators of damage potential.
The subjects who disagreed with our choice were of the opinion that the damage potential of a
channel or a data item is dependent on the methods of a system that process the data received
from the channel or the data item. A TCP socket and an RPC end point are equally attractive
to an attacker. Similarly, a file and a cookie are equally attractive an attacker. The findings
suggest that perhaps we should assign the same damage potential, i.e., 1, to all channels and data
items. In that case, we do not have to perform the difficult step of assigning total orderings among
the protocols of the channels and the types of the data items.

6.2 Statistical Analysis of Microsoft Security Bulletins

A Microsoft Security Bulletin describes a vulnerability present in a Microsoft software product [3].
The bulletin includes information on how an attacker may be able to exploit the vulnerability. It
mentions the code (method in our framework) of the software the contains the vulnerability and
the resources (communication channels, data items, or a combination of both) that the attacker

18

Resource Count

Methods 202
Channels 170
Data 108

Table 11: Number of observations that
mention methods, channels, and data.

Attribute Coefficient Standard Error p-value

Privilege 0.948 0.236 p < 0.001

Access Rights -0.584 0.110 p < 0.001

Table 12: Significance of the privilege and the access
rights of the methods.

has to use to exploit the vulnerability. Each bulletin is also assigned a severity rating that reflects
Microsoft’s assessment of the impact of the exploitation of the vulnerability on the users of the
software. There are four levels of severity ratings: Critical, Important, Moderate, and Low.

We collected data from 110 bulletins published over a period of two years from January 2004
to February 2006. From the description contained in each bulletin, we identified the resources
(method, channel, and data) that the attacker has to use to exploit the vulnerability. For each such
resource, we also identified the values of the attributes of the resource that indicate the resource’s
damage potential and effort. For each bulletin, we identified the privilege and the access rights
of the method, the protocol and the access rights of the channel, the type and the access rights
of the data item, and the criticality rating. Many bulletins contained multiple vulnerabilities and
many vulnerabilities were assigned different ratings for different versions of Windows. Hence the
110 bulletins resulted in 202 observations.

6.2.1 Validation of Hypothesis 1

Out of the 202 observations, 202 observations mention methods, 170 observations mention channels,
and 108 observations mention data items as the resources used in exploiting the vulnerabilities
reported in Microsoft security bulletins (Table 11). These findings suggest that methods, channels,
and data are the resources used in attacks on software systems. Hence we conclude that methods,
channels, and data are the right dimensions of the attack surface.

6.2.2 Validation of Hypothesis 3

Microsoft Security Bulletins are assigned severity ratings based on the impact of the exploitation
on the users of the software and the difficulty of exploitation [4]. In our attack surface measurement
method, impact on the user is directly proportional to damage potential and difficulty of exploita-
tion is directly proportional to effort. Hence we expect an indicator of damage potential to be an
indicator of the severity rating and to be positively correlated with the severity rating. Similarly, we
expect an indicator of effort to be an indicator of the severity rating and to be negatively correlated
with the severity rating.

For each of the 202 observations, we assigned numeric values to the attributes following the
method described in Section 4.2. We used Ordered Logistic Regression analysis to test for the
significance of the attributes in explaining the severity rating [36]. We used the sign of the coefficient
of an attribute and the p-value of a two sided z-test to determine if the attribute is an indicator
of the severity rating. A positive coefficient indicates a positive correlation between the attribute
and the severity rating, and a negative coefficient indicates a negative correlation. A p-value of less
than 0.05 indicates the attribute is an indicator of the severity rating. We below summarize our
findings that suggest that the six attributes are indicators of damage potential and effort.

19

Attribute Coefficient Standard Error p-value

SMTP 2.535 0.504 p < 0.001
TCP 0.957 0.466 p = 0.040
Pipe 0.948 0.574 p = 0.099

Access Rights -0.312 0.109 p = 0.004

Table 13: Significance of the protocol and the
access rights of the channels.

Attribute Coefficient Standard Error p-value

HTML -0.651 0.263 p = 0.013
DHTML -0.589 0.437 p = 0.177
ActiveX 1.522 0.480 p = 0.002
WMF 46.314 2.58e+09 p = 1.000
Doc -1.123 0.462 p = 0.015
Access Rights -0.310 0.078 p < 0.001

Table 14: Significance of the type and the access
rights of the data items.

1. A method’s privilege is an indicator of the severity rating and is positively correlated (Table
12).

2. A channel’s protocol (Table 13) and a data item’s type (Table 14) are indicators of the severity
rating. We could not determine the correlation between these two attributes and the severity
rating.

3. A method’s access rights (Table 12), a channel’s access rights (Table 13), and a data item’s
access rights (Table 14) are indicators of the severity rating and are negatively correlated.

From Table 12, the positive coefficient of the privilege attribute shows that privilege is positively
correlated with the severity rating. The p-value shows that privilege is an indicator of the severity
rating. Similarly, access rights is negatively correlated with the severity rating and is an indicator
of the severity rating.

In case of channels, we could not impose a total ordering among the protocols. Hence we
assigned values to the protocols on a nominal scale [10]. We identified the top three frequently
mentioned protocols in the observations and tested for the significance of these three protocols
with respect to the other protocols in explaining the severity rating. Since we assigned values on
a nominal scale, we could not use the signs of the coefficients to make any conclusions about the
correlation of the protocols with the severity rating. We show the results in Table 13. The p-values
show that both SMTP and TCP are significant and pipe is not significant in explaining the severity
rating. Since two of the three protocols are significant, the finding suggests that protocol is an
indicator of the severity rating. Similarly, the negative coefficient of access rights and the p-value
show that access rights is negatively correlated with the severity rating and is an indicator of the
severity rating.

In case of data items, 108 observations mentioned data items of only the file type. Since
all these observations have the same numeric value for the data type attribute, our initial logistic
regression analysis did not include the data type attribute in the analysis. Hence we identified the
file format (e.g., doc and html) of each data item mentioned in the bulletins and assigned numeric
values to the file formats on a nominal scale. We identified the top five frequently mentioned file
formats in the observations and tested for the the significance of these five formats with respect
to the other formats in explaining the severity rating. We show the results in Table 14. The
p-values show that HTML, ActiveX, and Doc are significant and DHTML and WMF are insignificant in
explaining the severity rating. We could not use the sign of the coefficients to make any conclusions
about the correlation of the data items with the severity rating. The findings suggest that the file
format is an indicator of the severity rating and hence data item type is an indicator of the severity
rating. Similarly, the negative coefficient of access rights and the p-value show that access rights is
negatively correlated with the severity rating and is an indicator of the severity rating.

20

6.3 Validation of Measurement Results

While we validated the steps in our measurement method, we did not validate specific measurement
results (e.g., the FTP measurement results). As part of future work, we plan to validate a sys-
tem’s attack surface measurement by correlating the measurement with real attacks on the system.
There is, however, anecdotal evidence suggesting the effectiveness of our metric in assessing relative
security of software. Our attack surface measurements show that ProFTPD is more secure than
Wu-FTPD along the method dimension. The project goals mentioned on the ProFTPD website
validate our measurements [29]. Many developers of ProFTPD had spent considerable amount of
time fixing bugs and adding new features to Wu-FTPD; they realized that a redesign was necessary
to add security, configurability, and new features. Hence ProFTPD was designed and implemented
from the ground up to be a secure and configurable FTP server.

There is also anecdotal evidence illustrating the effectiveness of attack surface reduction in
mitigating security risk [14]. The Sasser worm exploited a buffer overflow vulnerability present
in an RPC interface of Windows. The interface was accessible by every one in Windows 2000
and Windows XP. The interface, however, was made to be accessible only by local administrators
in Windows Server 2003 as part of the attack surface reduction process. Hence the Sasser worm
did not affect Window Server 2003. Similarly, the Zotob worm did not affect Windows XP and
Windows Server 2003 because of the raising of the access rights level of an RPC interface as part
of the attack surface reduction process.

7 Related Work

We compare our work with prior work on attack surface measurement in Section 7.1 and with
previous work on quantitative assessment of security in Section 7.2.

7.1 Attack Surface Measurement

Howard, Pincus, and Wing have measured the attack surfaces of seven versions of Windows [16]
and we have measured the attack surfaces of four versions of Linux [20]. A key step in both
the measurement method was the identification of attack vectors (classes), i.e., the features of a
system often used in attacks on the system (e.g., services running as SYSTEM in Windows) and
the assignment of weights to these attack vectors (classes). Howard et al. and we used the history
of attacks on a system to identify the attack vectors (classes) and assign weights to them. Both
the Windows and Linux measurement method were based on intuition. In our current work, we
use the entry point and exit point framework to identify the relevant resources that contribute to a
system’s attack surface and we use the notion of the damage potential-effort ratio to estimate the
weights of each such resource. Hence our attack surface measurement method entirely avoids the
need to identify a system’s attack vectors (classes).

7.2 Other Security Metrics

Our attack surface metric differs from prior work in two key aspects. First, our attack surface
measurement is based on a system’s inherent properties and is independent of any vulnerabilities
present in the system. Previous work assumes the knowledge of the past and current vulnerabilities
present in the system [1, 35, 26, 31]. In contrast, our identification of all entry points and exit points

21

encompasses all past and current vulnerabilities as well as future vulnerabilities not yet discovered
or exploited.

Second, prior research on measurement of security has taken an attacker-centric approach
[26, 31]. In contrast, we take a system-centric approach. The attacker-centric approach makes
assumption about attacker capabilities and resources whereas the system-centric approach assesses
a system’s security without reference to or assumptions about attacker capabilities [25]. Our attack
surface measurement is based on a system’s design and is independent of the attacker’s capabili-
ties and behavior; hence our metric can be used as a tool in the software design and development
process.

Alves-Foss et al. use the System Vulnerability Index (SVI)—obtained by evaluating factors
such as system characteristics, potentially neglectful acts, and potentially malevolent acts—as a
measure of a system’s vulnerability [1]. Alves-Foss et al., however, identify only the relevant factors
of operating systems; their focus is on operating systems and not individual software applications
such as IMAP servers. Moreover, we may not always be able to quantify the factors that determine
a system’s SVI.

Littlewood et al. explore the use of probabilistic methods used in traditional reliability analysis
in assessing the operational security of a system [19]. In their conceptual framework, they propose
to use the effort made by an attacker to breach a system as an appropriate measure of the system’s
security. They, however, do not propose a concrete method to estimate the attacker effort.

Voas et al. propose a relative security metric based on the fault injection technique [35].
They propose a Minimum-Time-To-Intrusion (MTTI) metric based on the predicted period of time
before any simulated intrusion can take place. The MTTI value, however, depends on the threat
classes simulated and the intrusion classes observed. Moreover, the MTTI computation requires
the knowledge of system vulnerabilities.

Ortalo et al. model a system’s known vulnerabilities as a privilege graph [8] and combine
assumptions about the attacker’s behavior with the privilege graphs to obtain attack state graphs
[26]. They analyze the attack state graphs using Markov techniques to estimate the effort an
attacker might spend to exploit the vulnerabilities; the estimated effort is a measure of the system’s
security. Their technique, however, requires the knowledge of the vulnerabilities present in the
system and the attacker’s behavior. Moreover, their approach focuses on assessing the operational
security of operating systems and not individual software applications.

Schneier uses attack trees to model the different ways in which a system can be attacked [31].
Given an attacker goal, Schneier constructs an attack tree to identify the different ways in which the
goal can be satisfied and to determine the cost to the attacker in satisfying the goal. The estimated
cost is a measure of the system’s security. Construction of an attack tree, however, requires the
knowledge of the following three factors: system vulnerabilities, possible attacker goals, and the
attacker behavior.

8 Summary and Future Work

In summary, we propose an attack surface metric that can be used by system designers to mitigate
the security risk of their systems and by software consumers to compare alternative software sys-
tems. The results of our expert survey show that a majority of the subjects agree with the steps
in our measurement method. The results of the statistical analysis of Microsoft Security Bulletins
confirm our choice of the dimensions of the attack surface and the choice of the six attributes as

22

indicators of damage potential and effort. Our parameter sensitivity analysis provides a set of
guidelines to users of our metric for assigning appropriate numeric values to the six attributes.

Attack surface measurement is already used in a regular basis as part of Microsoft’s Security
Development Lifecycle [15]. Mu Security’s Mu-4000 Security Analyzer also uses the attack surface
framework for security analysis [32]. In the future, we plan to extend our work in three directions.
First, we are collaborating with SAP to apply our method to an industrial-sized software system [5].
Second, we plan to develop suitable techniques for validating specific measurement results. Third,
we plan to extend our method so that we can approximate a system’s attack surface measurement
in the absence of source code.

We view our work as a first step towards a meaningful and practical security metric. There is
a pressing need for practical security metrics today; we hope that our work will rekindle interest
in security metric research. We believe that our understanding over time would lead us to more
meaningful and useful quantitative security metrics.

References

[1] J. Alves-Foss and S. Barbosa. Assessing computer security vulnerability. ACM SIGOPS
Operating Systems Review, 29(3):3–13, 1995.

[2] S. M. Bellovin. On the brittleness of software and the infeasibility of security metrics. IEEE
Security and Privacy, 04(4):96, 2006.

[3] Microsoft Corporation. Microsoft security bulletin search. http://www.microsoft.com/
technet/security/current.aspx.

[4] Microsoft Corporation. Microsoft security response center security bulletin severity rating
system. http://www.microsoft.com/technet/security/bulletin/rating.mspx.

[5] SAP Corporation. SAP - business software solutions applications and services. http://www.
sap.com/.

[6] Computing Research Association (CRA). Four grand challenges in trustworthy computing.
http://www.cra.org/reports/trustworthy.computing.pdf, November 2003.

[7] Project Cyrus. Cyrus IMAP server. http://asg.web.cmu.edu/cyrus/imapd/.

[8] M. Dacier and Y. Deswarte. Privilege graph: An extension to the typed access matrix model.
In Proc. of European Symposium on Research in Computer Security, 1994.

[9] D. DaCosta, C. Dahn, S. Mancoridis, and V. Prevelakis. Characterizing the security vul-
nerability likelihood of software functions. In Proc. of International Conference on Software
Maintenance, 2003.

[10] N. E. Fenton and S. L. Pfleeger. Software Metrics: A Rigorous and Practical Approach. PWS
Publishing Co., Boston, MA, USA, 1998.

[11] A. Fink and J. Kosecoff. How to Conduct Surveys: A Step-By-Step Guide. Sage Publications,
Beverly Hills, CA, USA, 1985.

23

[12] The WU-FTPD Development Group. Wu-ftpd. http://www.wu-ftpd.org/.

[13] M. Howard. Fending off future attacks by reducing attack surface. http://msdn.microsoft.
com/library/default.asp?url=/library/en-us/dncode%/html/secure02132003.asp,
2003.

[14] M. Howard. Personal communication, 2005.

[15] M. Howard and S. Lipner. The Security Development Lifecycle. Microsoft Press, 2006.

[16] M. Howard, J. Pincus, and J.M. Wing. Measuring relative attack surfaces. In Proc. of Work-
shop on Advanced Developments in Software and Systems Security, 2003.

[17] Double Precision Inc. Courier-IMAP sever. http://www.courier-mta.org/imap/.

[18] R. Likert. A technique for the measurement of attitudes. Archives of Psychology, 22(140):5–55,
June 1932.

[19] B. Littlewood, S. Brocklehurst, N. Fenton, P. Mellor, S. Page, D. Wright, J. Dobson J. Mc-
Dermid, and D. Gollman. Towards operational measures of computer security. Journal of
Computer Security, 2(2/3):211–230, 1993.

[20] P. Manadhata and J. M. Wing. Measuring a system’s attack surface. In Technical Report
CMU-CS-04-102, 2004.

[21] P. Manadhata and J. M. Wing. An attack surface metric. In Technical Report CMU-CS-05-155,
2005.

[22] P. K. Manadhata, J. M. Wing, M. A. Flynn, and M. A. McQueen. Measuring the attack
surfaces of two FTP daemons. In ACM CCS Workshop on Quality of Protection, October
2006.

[23] G. McGraw. From the ground up: The DIMACS software security workshop. IEEE Security
and Privacy, 1(2):59–66, 2003.

[24] J. McHugh. Quality of protection: Measuring the unmeasurable? Invited Talk at the ACM
CCS Workshop on Quality of Protection, October 2006.

[25] D. M. Nicol. Modeling and simulation in security evaluation. IEEE Security and Privacy,
3(5):71–74, 2005.

[26] R. Ortalo, Y. Deswarte, and M. Kaâniche. Experimenting with quantitative evaluation tools for
monitoring operational security. IEEE Transactions on Software Engineering, 25(5):633–650,
1999.

[27] S. Poznyakoff. GNU cflow. http://www.gnu.org/software/cflow.

[28] The ProFTPD Project. The ProFTPD project home. http://www.proftpd.org/.

[29] The ProFTPD Project. Project goals. http://www.proftpd.org/goals.html.

24

[30] P. H. Rossi, J. D. Wright, and A. B. Anderson, editors. Handbook of Survey Research. The
Academic Press, New York, NY, USA, 1983.

[31] B. Schneier. Attack trees: Modeling security threats. Dr. Dobb’s Journal, 1999.

[32] Mu Security. What is a security analyzer. http://www.musecurity.com/solutions/
overview/security.html.

[33] W. R. Shadish, T. D. Cook, and D. T. Campbell. Experimental and Quasi-Experimental
Designs for Generalized Causal Inference. Houghton Mifflin Company, Boston, MA, 2001.

[34] R. B. Vaughn, R. R. Henning, and A. Siraj. Information assurance measures and metrics
- state of practice and proposed taxonomy. In Proc. of Hawaii International Conference on
System Sciences, 2003.

[35] J. Voas, A. Ghosh, G. McGraw, F. Charron, and K. Miller. Defining an adaptive software secu-
rity metric from a dynamic software failure tolerance measure. In Proc. of Annual Conference
on Computer Assurance, 1996.

[36] J. M. Wooldridge. Econometric Analysis of Cross Section and Panel Data. The MIT Press,
Cambridge, MA, USA, 2002.

A Input and Output Methods

Input = {canonicalize file name, catgets, confstr, ctermid, ctermid, cuserid, dgettext, dngettext,
fgetc, fgetc unlocked, fgets, fgets unlocked, fpathconf, fread, fread unlocked, fscanf, getc, getchar,
getchar unlocked, getc unlocked, get current dir name, getcwd, getdelim, getdelim, getdelim, get-
dents, getenv, gethostbyaddr, gethostbyname, gethostbyname2, gethostent, gethostid, getline, get-
line, getlogin, getlogin r, getmsg, getopt, getopt internal, getopt long, getopt long only, getpass,
getpmsg, gets, gettext, getw, getwd, ngettext, pathconf, pread, pread64, ptsname, ptsname r, read,
readdir, readlink, readv, realpath, recv, recv from, recvmesg, scanf, secure getenv, signal, sysconf,
ttyname, ttyname r, vfscanf, vscanf}

Output = {dprintf, fprintf, fputc, fputchar unlocked, fputc unlocked, fputs, fputs unlocked,
fwrite, fwrite unlocked, perror, printf, psignal, putc, putchar, putc unlocked, putenv, putmsg,
putpmsg, puts, putw, pwrite, pwrite64, send, sendmsg, sendto, setenv, sethostid, setlogin, ungetc,
vdprintf, vfprintf, vsyslog, write, writev}

25

